3.1561 \(\int \frac{(a^2+2 a b x+b^2 x^2)^{3/2}}{(d+e x)^2} \, dx\)

Optimal. Leaf size=183 \[ -\frac{b^2 x \sqrt{a^2+2 a b x+b^2 x^2} (2 b d-3 a e)}{e^3 (a+b x)}+\frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{e^4 (a+b x) (d+e x)}+\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2 \log (d+e x)}{e^4 (a+b x)}+\frac{b^3 x^2 \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^2 (a+b x)} \]

[Out]

-((b^2*(2*b*d - 3*a*e)*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x))) + (b^3*x^2*Sqrt[a^2 + 2*a*b*x + b^2*x
^2])/(2*e^2*(a + b*x)) + ((b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)) + (3*b*(b*d -
 a*e)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[d + e*x])/(e^4*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0922766, antiderivative size = 183, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {646, 43} \[ -\frac{b^2 x \sqrt{a^2+2 a b x+b^2 x^2} (2 b d-3 a e)}{e^3 (a+b x)}+\frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{e^4 (a+b x) (d+e x)}+\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2 \log (d+e x)}{e^4 (a+b x)}+\frac{b^3 x^2 \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^2 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

-((b^2*(2*b*d - 3*a*e)*x*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^3*(a + b*x))) + (b^3*x^2*Sqrt[a^2 + 2*a*b*x + b^2*x
^2])/(2*e^2*(a + b*x)) + ((b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)) + (3*b*(b*d -
 a*e)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Log[d + e*x])/(e^4*(a + b*x))

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{(d+e x)^2} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (a b+b^2 x\right )^3}{(d+e x)^2} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (-\frac{b^5 (2 b d-3 a e)}{e^3}+\frac{b^6 x}{e^2}-\frac{b^3 (b d-a e)^3}{e^3 (d+e x)^2}+\frac{3 b^4 (b d-a e)^2}{e^3 (d+e x)}\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=-\frac{b^2 (2 b d-3 a e) x \sqrt{a^2+2 a b x+b^2 x^2}}{e^3 (a+b x)}+\frac{b^3 x^2 \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^2 (a+b x)}+\frac{(b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) (d+e x)}+\frac{3 b (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2} \log (d+e x)}{e^4 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0900179, size = 132, normalized size = 0.72 \[ \frac{\sqrt{(a+b x)^2} \left (6 a^2 b d e^2-2 a^3 e^3+6 a b^2 e \left (-d^2+d e x+e^2 x^2\right )+6 b (d+e x) (b d-a e)^2 \log (d+e x)+b^3 \left (-4 d^2 e x+2 d^3-3 d e^2 x^2+e^3 x^3\right )\right )}{2 e^4 (a+b x) (d+e x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

(Sqrt[(a + b*x)^2]*(6*a^2*b*d*e^2 - 2*a^3*e^3 + 6*a*b^2*e*(-d^2 + d*e*x + e^2*x^2) + b^3*(2*d^3 - 4*d^2*e*x -
3*d*e^2*x^2 + e^3*x^3) + 6*b*(b*d - a*e)^2*(d + e*x)*Log[d + e*x]))/(2*e^4*(a + b*x)*(d + e*x))

________________________________________________________________________________________

Maple [A]  time = 0.202, size = 216, normalized size = 1.2 \begin{align*}{\frac{{x}^{3}{b}^{3}{e}^{3}+6\,\ln \left ( ex+d \right ) x{a}^{2}b{e}^{3}-12\,\ln \left ( ex+d \right ) xa{b}^{2}d{e}^{2}+6\,\ln \left ( ex+d \right ) x{b}^{3}{d}^{2}e+6\,{x}^{2}a{b}^{2}{e}^{3}-3\,{x}^{2}{b}^{3}d{e}^{2}+6\,\ln \left ( ex+d \right ){a}^{2}bd{e}^{2}-12\,\ln \left ( ex+d \right ) a{b}^{2}{d}^{2}e+6\,\ln \left ( ex+d \right ){b}^{3}{d}^{3}+6\,xa{b}^{2}d{e}^{2}-4\,x{b}^{3}{d}^{2}e-2\,{a}^{3}{e}^{3}+6\,d{e}^{2}{a}^{2}b-6\,a{b}^{2}{d}^{2}e+2\,{b}^{3}{d}^{3}}{2\, \left ( bx+a \right ) ^{3}{e}^{4} \left ( ex+d \right ) } \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^2,x)

[Out]

1/2*((b*x+a)^2)^(3/2)*(x^3*b^3*e^3+6*ln(e*x+d)*x*a^2*b*e^3-12*ln(e*x+d)*x*a*b^2*d*e^2+6*ln(e*x+d)*x*b^3*d^2*e+
6*x^2*a*b^2*e^3-3*x^2*b^3*d*e^2+6*ln(e*x+d)*a^2*b*d*e^2-12*ln(e*x+d)*a*b^2*d^2*e+6*ln(e*x+d)*b^3*d^3+6*x*a*b^2
*d*e^2-4*x*b^3*d^2*e-2*a^3*e^3+6*d*e^2*a^2*b-6*a*b^2*d^2*e+2*b^3*d^3)/(b*x+a)^3/e^4/(e*x+d)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.49036, size = 354, normalized size = 1.93 \begin{align*} \frac{b^{3} e^{3} x^{3} + 2 \, b^{3} d^{3} - 6 \, a b^{2} d^{2} e + 6 \, a^{2} b d e^{2} - 2 \, a^{3} e^{3} - 3 \,{\left (b^{3} d e^{2} - 2 \, a b^{2} e^{3}\right )} x^{2} - 2 \,{\left (2 \, b^{3} d^{2} e - 3 \, a b^{2} d e^{2}\right )} x + 6 \,{\left (b^{3} d^{3} - 2 \, a b^{2} d^{2} e + a^{2} b d e^{2} +{\left (b^{3} d^{2} e - 2 \, a b^{2} d e^{2} + a^{2} b e^{3}\right )} x\right )} \log \left (e x + d\right )}{2 \,{\left (e^{5} x + d e^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^2,x, algorithm="fricas")

[Out]

1/2*(b^3*e^3*x^3 + 2*b^3*d^3 - 6*a*b^2*d^2*e + 6*a^2*b*d*e^2 - 2*a^3*e^3 - 3*(b^3*d*e^2 - 2*a*b^2*e^3)*x^2 - 2
*(2*b^3*d^2*e - 3*a*b^2*d*e^2)*x + 6*(b^3*d^3 - 2*a*b^2*d^2*e + a^2*b*d*e^2 + (b^3*d^2*e - 2*a*b^2*d*e^2 + a^2
*b*e^3)*x)*log(e*x + d))/(e^5*x + d*e^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.17053, size = 236, normalized size = 1.29 \begin{align*} 3 \,{\left (b^{3} d^{2} \mathrm{sgn}\left (b x + a\right ) - 2 \, a b^{2} d e \mathrm{sgn}\left (b x + a\right ) + a^{2} b e^{2} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )} \log \left ({\left | x e + d \right |}\right ) + \frac{1}{2} \,{\left (b^{3} x^{2} e^{2} \mathrm{sgn}\left (b x + a\right ) - 4 \, b^{3} d x e \mathrm{sgn}\left (b x + a\right ) + 6 \, a b^{2} x e^{2} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )} + \frac{{\left (b^{3} d^{3} \mathrm{sgn}\left (b x + a\right ) - 3 \, a b^{2} d^{2} e \mathrm{sgn}\left (b x + a\right ) + 3 \, a^{2} b d e^{2} \mathrm{sgn}\left (b x + a\right ) - a^{3} e^{3} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )}}{x e + d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^2,x, algorithm="giac")

[Out]

3*(b^3*d^2*sgn(b*x + a) - 2*a*b^2*d*e*sgn(b*x + a) + a^2*b*e^2*sgn(b*x + a))*e^(-4)*log(abs(x*e + d)) + 1/2*(b
^3*x^2*e^2*sgn(b*x + a) - 4*b^3*d*x*e*sgn(b*x + a) + 6*a*b^2*x*e^2*sgn(b*x + a))*e^(-4) + (b^3*d^3*sgn(b*x + a
) - 3*a*b^2*d^2*e*sgn(b*x + a) + 3*a^2*b*d*e^2*sgn(b*x + a) - a^3*e^3*sgn(b*x + a))*e^(-4)/(x*e + d)